Contracted auxiliary Gaussian basis integral and derivative evaluation.

نویسندگان

  • Timothy J Giese
  • Darrin M York
چکیده

The rapid evaluation of two-center Coulomb and overlap integrals between contracted auxiliary solid harmonic Gaussian functions is examined. Integral expressions are derived from the application of Hobson's theorem and Dunlap's product and differentiation rules of the spherical tensor gradient operator. It is shown that inclusion of the primitive normalization constants greatly simplifies the calculation of contracted functions corresponding to a Gaussian multipole expansion of a diffuse charge density. Derivative expressions are presented and it is shown that chain rules are avoided by expressing the derivatives as a linear combination of auxiliary integrals involving no more than five terms. Calculation of integrals and derivatives requires the contraction of a single vector corresponding to the monopolar result and its scalar derivatives. Implementation of the method is discussed and comparison is made with a Cartesian Gaussian-based method. The current method is superior for the evaluation of both integrals and derivatives using either primitive or contracted functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency.

Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions ...

متن کامل

Two - Electron Repulsion Integrals Over Gaussian s Functions

We present an efficient scheme to evaluate the [O](m) integrals that arise in many ab initio quantum chemical two-electron integral algorithms. The total number of floating-point operations (FLOPS) required by the scheme has been carefully minimized, both for cases where multipole expansions of the integrals are admissable and for cases where this is not so. The algorithm is based on the use of...

متن کامل

Chaos Expansion Methods for Stochastic Differential Equations Involving the Malliavin Derivative–part I

We consider Gaussian, Poissonian, fractional Gaussian and fractional Poissonian white noise spaces, all represented through the corresponding orthogonal basis of the Hilbert space of random variables with finite second moments, given by the Hermite and the Charlier polynomials. There exist unitary mappings between the Gaussian and Poissonian white noise spaces. We investigate the relationship o...

متن کامل

Effklent Computation of Two-Electron-Repulsion Integrals and Thelr nth-Order Derivatives Using Contracted Gaussian Basis Sets

We present an general algorithm for the evaluation of the nth derivatives (with respect to the nuclear Cartesian coordinates) of two-electron-repulsion integrals (ERIs) over Gaussian basis functions. The algorithm is a generalization of our recent synthesis of the McMurchie/Davidson and Head-Gordon/Pople methodologies for ERI generation. Any ERI nth derivative may be viewed as an inner product ...

متن کامل

NURBS-Based Isogeometric Analysis Method Application to Mixed-Mode Computational Fracture Mechanics

An interaction integral method for evaluating mixed-mode stress intensity factors (SIFs) for two dimensional crack problems using NURBS-based isogeometric analysis method is investigated. The interaction integral method is based on the path independent J-integral. By introducing a known auxiliary field solution, the mixed-mode SIFs are calculated simultaneously. Among features of B-spline basis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 6  شماره 

صفحات  -

تاریخ انتشار 2008